Regular Pairings of Functors and Weak (co)monads
نویسنده
چکیده
For functors L : A→ B and R : B→ A between any categories A and B, a pairing is defined by maps, natural in A ∈ A and B ∈ B, MorB(L(A), B) α // MorA(A,R(B)) β oo . (L,R) is an adjoint pair provided α (or β) is a bijection. In this case the composition RL defines a monad on the category A, LR defines a comonad on the category B, and there is a well-known correspondence between monads (or comonads) and adjoint pairs of functors. For various applications it was observed that the conditions for a unit of a monad was too restrictive and weakening it still allowed for a useful generalised notion of a monad. This led to the introduction of weak monads and weak comonads and the definitions needed were made without referring to this kind of adjunction. The motivation for the present paper is to show that these notions can be naturally derived from pairings of functors (L,R, α, β) with α = α·β·α and β = β·α·β. Following closely the constructions known for monads (and unital modules) and comonads (and counital comodules), we show that any weak (co)monad on A gives rise to a regular pairing between A and the category of compatible (co)modules. MSC: 18A40, 18C20, 16T15.
منابع مشابه
Qf Functors and (co)monads
One reason for the universal interest in Frobenius algebras is that their characterisation can be formulated in arbitrary categories: a functor K : A → B between categories is Frobenius if there exists a functor G : B → A which is at the same time a right and left adjoint of K; a monad F on A is a Frobenius monad provided the forgetful functor AF → A is a Frobenius functor, where AF denotes the...
متن کاملHopf Pairings and (Co)induction Functors over Commutative Rings
Co)induction functors appear in several areas of Algebra in different forms. Interesting examples are the so called induction functors in the Theory of Affine Algebraic Groups. In this paper we investigate Hopf pairings (bialgebra pairings) and use them to study (co)induction functors for affine group schemes over arbitrary commutative ground rings. We present also a special type of Hopf pairin...
متن کاملThe 2-category of Weak Entwining Structures
A weak entwining structure in a 2-category K consists of a monad t and a comonad c, together with a 2-cell relating both structures in a way that generalizes a mixed distributive law. A weak entwining structure can be characterized as a compatible pair of a monad and a comonad, in 2-categories generalizing the 2-category of comonads and the 2-category of monads in K , respectively. This observa...
متن کاملMonads on Composition Graphs
Collections of objects and morphisms that fail to form categories inas-much as the expected composites of two morphisms need not always be deened have been introduced in 14, 15] under the name composition graphs. In 14, 16], notions of adjunction and weak adjunction for composition graphs have been proposed. Building on these deenitions, we now introduce a concept of monads for composition grap...
متن کاملPredicate Logic for Functors and Monads
This paper starts from the elementary observation that what is usually called a predicate lifting in coalgebraic modal logic is in fact an endomap of indexed categories. This leads to a systematic review of basic results in predicate logic for functors and monads, involving induction and coinduction principles for functors and compositional modal operators for monads.
متن کامل